Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 226, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378497

RESUMO

BACKGROUND: Leprosy is an infectious disease with a slow decline in global annual caseload in the past two decades. Active case finding and post-exposure prophylaxis (PEP) with a single dose of rifampicin (SDR) are recommended by the World Health Organization as measures for leprosy elimination. However, more potent PEP regimens are needed to increase the effect in groups highest at risk (i.e., household members and blood relatives, especially of multibacillary patients). The PEP++ trial will assess the effectiveness of an enhanced preventive regimen against leprosy in high-endemic districts in India, Brazil, Bangladesh, and Nepal compared with SDR-PEP. METHODS: The PEP++ study is a cluster-randomised controlled trial in selected districts of India, Brazil, Bangladesh, and Nepal. Sub-districts will be allocated randomly to the intervention and control arms. Leprosy patients detected from 2015 - 22 living in the districts will be approached to list their close contacts for enrolment in the study. All consenting participants will be screened for signs and symptoms of leprosy and tuberculosis (TB). In the intervention arm, eligible contacts receive the enhanced PEP++ regimen with three doses of rifampicin (150 - 600 mg) and clarithromycin (150 - 500 mg) administered at four-weekly intervals, whereas those in the control arm receive SDR-PEP. Follow-up screening for leprosy will be done for each individual two years after the final dose is administered. Cox' proportion hazards analysis and Poisson regression will be used to compare the incidence rate ratios between the intervention and control areas as the primary study outcome. DISCUSSION: Past studies have shown that the level of SDR-PEP effectiveness is not uniform across contexts or in relation to leprosy patients. To address this, a number of recent trials are seeking to strengthen PEP regimens either through the use of new medications or by increasing the dosage of the existing ones. However, few studies focus on the impact of multiple doses of chemoprophylaxis using a combination of antibiotics. The PEP++ trial will investigate effectiveness of both an enhanced regimen and use geospatial analysis for PEP administration in the study communities. TRIAL REGISTRATION: NL7022 on the Dutch Trial Register on April 12, 2018. Protocol version 9.0 updated on 18 August 2022 https://www.onderzoekmetmensen.nl/en/trial/23060.


Assuntos
Hanseníase , Rifampina , Humanos , Rifampina/uso terapêutico , Profilaxia Pós-Exposição/métodos , Hanseníase/tratamento farmacológico , Hanseníase/prevenção & controle , Hanseníase/diagnóstico , Antibacterianos/uso terapêutico , Claritromicina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Vaccine ; 39(50): 7230-7237, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34688497

RESUMO

Leprosy is an infectious disease caused by Mycobacterium leprae leading to irreversible disabilities along with social exclusion. Leprosy is a spectral disease for which the clinical outcome after M. leprae infection is determined by host factors. The spectrum spans from anti-inflammatory T helper-2 (Th2) immunity concomitant with large numbers of bacteria as well as antibodies against M. leprae antigens in multibacillary (MB) leprosy, to paucibacillary (PB) leprosy characterised by strong pro-inflammatory, Th1 as well as Th17 immunity. Despite decades of availability of adequate antibiotic treatment, transmission of M. leprae is unabated. Since individuals with close and frequent contact with untreated leprosy patients are particularly at risk to develop the disease themselves, prophylactic strategies currently focus on household contacts of newly diagnosed patients. It has been shown that BCG (re)vaccination can reduce the risk of leprosy. However, BCG immunoprophylaxis in contacts of leprosy patients has also been reported to induce PB leprosy, indicating that BCG (re)vaccination may tip the balance between protective immunity and overactivation immunity causing skin/nerve tissue damage. In order to identify who is at risk of developing PB leprosy after BCG vaccination, amongst individuals who are chronically exposed to M. leprae, we analyzed innate and adaptive immune markers in whole blood of household contacts of newly diagnosed leprosy patients in Bangladesh, some of which received BCG vaccination. As controls, individuals from the same area without known contact with leprosy patients were similarly assessed. Our data show the added effect of BCG vaccination on immune markers on top of the effect already induced by M. leprae exposure. Moreover, we identified BCG-induced markers that differentiate between protective and disease prone immunity in those contacts.


Assuntos
Vacina BCG , Hanseníase , Antígenos de Bactérias , Humanos , Hanseníase/prevenção & controle , Mycobacterium leprae , Pele , Vacinação
3.
EBioMedicine ; 68: 103379, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34090257

RESUMO

BACKGROUND: Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is often late- or misdiagnosed leading to irreversible disabilities. Blood transcriptomic biomarkers that prospectively predict those who progress to leprosy (progressors) would allow early diagnosis, better treatment outcomes and facilitate interventions aimed at stopping bacterial transmission. To identify potential risk signatures of leprosy, we collected whole blood of household contacts (HC, n=5,352) of leprosy patients, including individuals who were diagnosed with leprosy 4-61 months after sample collection. METHODS: We investigated differential gene expression (DGE) by RNA-Seq between progressors before presence of symptoms (n=40) and HC (n=40), as well as longitudinal DGE within each progressor. A prospective leprosy signature was identified using a machine learning approach (Random Forest) and validated using reverse transcription quantitative PCR (RT-qPCR). FINDINGS: Although no significant intra-individual longitudinal variation within leprosy progressors was identified, 1,613 genes were differentially expressed in progressors before diagnosis compared to HC. We identified a 13-gene prospective risk signature with an Area Under the Curve (AUC) of 95.2%. Validation of this RNA-Seq signature in an additional set of progressors (n=43) and HC (n=43) by RT-qPCR, resulted in a final 4-gene signature, designated RISK4LEP (MT-ND2, REX1BD, TPGS1, UBC) (AUC=86.4%). INTERPRETATION: This study identifies for the first time a prospective transcriptional risk signature in blood predicting development of leprosy 4 to 61 months before clinical diagnosis. Assessment of this signature in contacts of leprosy patients can function as an adjunct diagnostic tool to target implementation of interventions to restrain leprosy development. FUNDING: This study was supported by R2STOP Research grant, the Order of Malta-Grants-for-Leprosy-Research, the Q.M. Gastmann-Wichers Foundation and the Leprosy Research Initiative (LRI) together with the Turing Foundation (ILEP# 702.02.73 and # 703.15.07).


Assuntos
Biomarcadores/sangue , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Hanseníase/diagnóstico , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Hanseníase/sangue , Hanseníase/genética , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sequência de RNA , Adulto Jovem
4.
iScience ; 24(1): 102006, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490914

RESUMO

To end the decade-long, obstinately stagnant number of new leprosy cases, there is an urgent need for field-applicable diagnostic tools that detect infection with Mycobacterium leprae, leprosy's etiologic agent. Since immunity against M. leprae is characterized by humoral and cellular markers, we developed a lateral flow test measuring multiple host proteins based on six previously identified biomarkers for various leprosy phenotypes. This multi-biomarker test (MBT) demonstrated feasibility of quantitative detection of six host serum proteins simultaneously, jointly allowing discrimination of patients with multibacillary and paucibacillary leprosy from control individuals in high and low leprosy endemic areas. Pilot testing of fingerstick blood showed similar MBT performance in point-of-care (POC) settings as observed for plasma and serum. Thus, this newly developed prototype MBT measures six biomarkers covering immunity against M. leprae across the leprosy spectrum. The MBT thereby provides the basis for immunodiagnostic POC tests for leprosy with potential for other (infectious) diseases as well.

5.
Int J Infect Dis ; 88: 65-72, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499206

RESUMO

OBJECTIVE: To assess the effectiveness of single-dose rifampicin (SDR) after bacillus Calmette-Guérin (BCG) vaccination in preventing leprosy in contacts. METHODS: This was a single-centre, cluster-randomized controlled trial at a leprosy control programme in northwest Bangladesh. Participants were the 14988 contacts of 1552 new leprosy patients who were randomized into the SDR-arm (n=7379) and the SDR+arm (n=7609). In the intervention group, BCG vaccination was followed by SDR 8-12 weeks later. In the control group, BCG vaccination only was given. Follow-up was performed at 1year and 2 years after intake. The main outcome measure was the occurrence of leprosy. RESULTS: The incidence rate per 10000 person-years at risk was 44 in the SDR-arm and 31 in the SDR+arm at 1year; the incidence rate was 34 in the SDR-arm and 41 in the SDR+arm at 2 years. There was a statistically non-significant (p=0.148; 42%) reduction for paucibacillary (PB) leprosy in the SDR+ arm at 1 year. Of all new cases, 33.6% appeared within 8-12 weeks after BCG vaccination. CONCLUSIONS: In the first year, SDR after BCG vaccination reduced the incidence of PB leprosy among contacts by 42%. This was a statistically non-significant reduction due to the limited number of cases after SDR was administered. To what extent SDR suppresses excess leprosy cases after BCG vaccination is difficult to establish because many cases appeared before the SDR intervention. TRIAL REGISTRATION: Netherlands Trial Register: NTR3087.


Assuntos
Vacina BCG/administração & dosagem , Hansenostáticos/administração & dosagem , Hanseníase/prevenção & controle , Rifampina/administração & dosagem , Adolescente , Adulto , Bangladesh , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico , Hanseníase/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/fisiologia , Vacinação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...